42184 Data science inden for mobilitet

2021/2022

Kursusinformation
Data Science for Mobility
Engelsk
5
Kandidat
E1A (man 8-12)
Campus Lyngby
Forelæsninger, gruppearbejder og online undervisning (for eksempel iPython notebook)
13-uger
Bedømmelse af opgave(r)/rapport(er)
The evaluation is based on two mini-tests (coding and data modeling exercises in Jupyter notebook, each about 1hr of duration) and a group project (with mandatory description of individualized contributions). The grade is based on an overall evaluation of the performance.
7-trins skala , intern bedømmelse
42577
42577 Introduction to Business Analytics
02402/02403/02105 , Indledende kurser i statistik er meget vigtige (programmering er også meget ønskeligt, men ikke grundlæggende)
Francisco Camara Pereira , Lyngby Campus, Bygning 116, Tlf. (+45) 4525 1496 , camara@dtu.dk
Filipe M Pereira Duarte Rodrigues , Lyngby Campus, Bygning 116, Tlf. (+45) 4525 6530 , rodr@dtu.dk
Ravi Seshadri , ravse@dtu.dk
42 Institut for Teknologi, Ledelse og Økonomi
I studieplanlæggeren
Dette kursus giver den studerende en mulighed for at lave eller forberede et projekt som kan deltage i DTUs studenterkonference om bæredygtighed, klimateknologi og miljø (GRØN DYST). Se mere på http://www.groendyst.dtu.dk
Overordnede kursusmål
This course introduces the portfolio of data science tasks and techniques necessary for exploring, manipulating, visualizing and analysing data (descriptive analytics), as well as for building prediction models using machine learning (predictive analytics) that can be used to gain insights and support decisions (prescriptive analytics). It is designed with Management Engineering students in mind (i.e. some programming background, but not the core skill), particularly – but not exclusively - those related to studies on mobility and logistics and business analytics. Therefore, it contains a strong hands-on component, with specific real-world cases from mobility and business contexts.

The course also includes an introduction to Python programming, data wrangling, problem formulation, and the basic suite of machine learning algorithms.
Læringsmål
En studerende, der fuldt ud har opfyldt kursets mål, vil kunne:
  • Run Python scripts that load and analyse small/medium-sized datasets
  • Convert a raw dataset into an actionable form to solve a concrete problem
  • Apply basic data structures and algorithms to manipulate data
  • Relate available problems and data in a mobility context with techniques to tackle them
  • Extract and analyse insights from the application of methods for descriptive and predictive analytics
  • Visualize complex temporal and spatial patterns
  • Argue for the choice of appropriate data analysis and predictive analytics algorithms
  • Appropriately train and test a statistical model to answer a problem
  • Critically evaluate the results of a data sciences analysis and recommend actions
  • Explain important data mining concepts, such as overfitting, bias, regularisation, etc.
Kursusindhold
The classes are taught in an interactive manner, with theoretical parts, intermingled with practice with Jupyter Notebooks. 

Main topics are: Introduction to Python programming and Pandas, data visualisation, forecasting and regression models, classification, clustering, dimensionality reduction. The methods will be exemplified through different cases within e.g. transportation, business management and marketing.
Litteraturhenvisninger
Each lecture has its own recommended texts, that should be available publicly online. For the student interested in a book to follow, we recommend
"The elements of statistical learning", Trevor Hastie, Robert Tibshirani and Jerome H. Friedman
"Python for Data Analysis", Wes McKinney
Sidst opdateret
22. april, 2021