01415 Computational Discrete Mathematics

2016/2017

Kursusinformation
Computational Discrete Mathematics
Engelsk
5
Kandidat
Kurset udbydes under tompladsordningen
E3A (tirs 8-12)
Campus Lyngby
forelæsninger, grupperegning, projektopgaver.
13-uger
Aftales med underviser, Aftales med underviser
Bedømmelse af øvelser og rapport(er)
Alle hjælpemidler er tilladt
bestået/ikke bestået , intern bedømmelse
01018/01426 , Some pre-knowledge in abstract algebra (groups, rings, and finite fields); Some experience with programming languages (such as C) and/or computer algebra systems (such as Maple); Basic knowledge about algorithms
Minimum 5
Andrey Bogdanov , Lyngby Campus, Bygning 324, Tlf. (+45) 4525 5472 , anbog@dtu.dk
Peter Beelen , Lyngby Campus, Bygning 303B, Tlf. (+45) 4525 3022 , pabe@dtu.dk

01 Institut for Matematik og Computer Science
I studieplanlæggeren
Overordnede kursusmål
An introduction to fundamental algorithms that play an important role in modern engineering science: finite field arithmetic (crucial for cryptography and coding theory) as well as solving systems of nonlinear equations (central to many areas of computer science and enigeering). The focus is on acquiring mathematical tools to solve problems in practice.
Læringsmål
En studerende, der fuldt ud har opfyldt kursets mål, vil kunne:
  • Efficiently compute over finite fields: addition, multiplication, squaring, exponentiation
  • Apply the algorithms for efficient finite field arithmetic to implement real-world cryptographic protocols
  • Represent classes of real-world problems as systems of nonlinear equations
  • Solve systems of nonlinear equations by applying such algorithms as Buchberger's algorithm and SAT solvers
  • Apply a computer algebra system to solve computational problems in practice
  • Determine complexity of algorithms
  • Write quality technical reports
  • Present results concisely and informatively
  • Efficiently work and communicate in teams
Kursusindhold
Rings, finite fields, arithmetic in finite fields (efficient addition, multiplication, squaring), algorithms for exponentiation, algorithms for solving nonlinear systems of equations (such as SAT solvers or Gröbner-basis finding Buchberger's algorithm), computer algebra systems
Sidst opdateret
28. oktober, 2016