27822 Hackinars i bioinformatik

2016/2017

Kurset udbydes ikke forår 2017.
Kursusinformation
Hackinars in Bioinformatics
Engelsk
5
Ph.d., Fagligt fokuseret kursus
Forår
Syv hele tirsdage i forårssemesteret. Første gang den 1. marts.
Campus Lyngby
[Kurset følger ikke DTUs normale skemastruktur]
Bedømmelse af øvelser
Noter afleveres efter hver øvelsesgang. Deltagelse i præsentationer.
Alle hjælpemidler er tilladt
bestået/ikke bestået , intern bedømmelse
Dette er ikke et programmeringskursus. De studerende forventes at være bekendt med mindst et programmeringssprog.
Minimum 6 Maksimum: 30
Ole Lund , Lyngby Campus, Bygning 208, Tlf. (+45) 4525 2425 , lund@bioinformatics.dtu.dk

27 Institut for Systembiologi
http://wiki.bio.dtu.dk/teaching/in..._Bioinformatics
Hos underviser
Overordnede kursusmål
The student should be able to use bioinformatic tools in the UNIX environments at DTU Lyngby and Risø campus supercomputers, as well as on their own laptops.
Læringsmål
En studerende, der fuldt ud har opfyldt kursets mål, vil kunne:
  • log on the supercomputers at the Risø and Lyngby campuses. Be familiar with the strengths and weaknesses of each computer including their own laptop.
  • use basic UNIX commands ls (+command line options), cd, mv, cp, rm, etc. Know about good coding practices.
  • be familiar with the use of machine learning methods, PSSM, SMM, ANN (shallow and deep), for construction of prediction tools for B and T cell epitopes.
  • Install R on personal computer and on a UNIX server and be familiar with installing packages.
  • Understand the benefits and problems with different versions of R. Do basic statistics in R, Students t-test, ANOVA, Pearson’s R, AROC, etc.
  • Use R for Plotting 1D and 2D clustering, and plotting in R.
  • The students should be familiar with NGS technologies, Data basics and trimming, Mapping with bwa, De novo assembly with , Base/variant calling, Basic NGS file formats fasta, fastq, SAM, BAM, CRAM, vcf
  • Use methods for structure prediction and visualisation. Use tools for protein structure prediction Visualise of protein structure with PyMol Transfer information from gene or protein information to protein structure visualisation
Kursusindhold
The supercomputers at the Risø and Lyngby campuses. UNIX commands and good coding practices. Using R. Machine learning methods. NGS technologies. Methods for structure prediction and visualisation.
Sidst opdateret
07. juli, 2016