2015/2016

02460 Avanceret machine learning

Engelsk titel:

Advanced Machine Learning

Sprog:

Point( ECTS )

5

Kursustype:

Kandidat
Kurset udbydes under tompladsordningen
 

Skemaplacering:

F1B (tors 13-17)
Kurset indledes med forelæsninger og øvelser i F1B (sædvanligvis 3-4 uger). Derefter udføres gruppearbejde i grupper af 2-3 studerende og projektmøder aftales med vejleder.

Undervisningens placering:

Campus Lyngby

Undervisningsform:

Forelæsininger og projektarbejde i grupper af 2-3 studerende

Kursets varighed:

13-uger

Eksamensplacering:

F1B, Mundtlig posterpræsentation i slutningen af semesteret. Skriftlig rapport afleveres ved udgangen af semesteret.

Evalueringsform:

Hjælpemidler:

Bedømmelsesform:

Pointspærring:

Anbefalede forudsætninger:

,

Overordnede kursusmål:

At sætte deltagerne i stand til at følge udvalgte emner af den nyeste udvikling indenfor machine learning. At anvende metoderne i et af mange mulige områder indenfor teknik og videnskab.

Læringsmål:

En studerende, der fuldt ud har opfyldt kursets mål, vil kunne:
  • Opstille egne læringsmål for projektforløbet
  • Indsamle videnskabelig viden og data om projektets emne med udgangspunkt i projektoplæg
  • Foretage en velbegrundet afgrænsning af projektet samt formulere specifikke hypoteser og mål
  • Organisere samarbejdet i projektgruppen
  • Planlægge og gennemføre et projektforløb i samarbejde med projektvejlederen
  • Designe et machine learning baseret system med udgangspunkt i analyse af problemstilling og projekts mål samt udvælge relevante algoritmer og metoder
  • Vurdere og sammenfatte projektets resultater i relation til mål, metoder og tilgængelige data
  • Udføre projektet og fortolke resultater ved anvendelse af Matlab, Python eller andet programmeringssprog
  • Strukturere og skrive en afsluttende kort teknisk artikel indeholdende problemformulering, metodebeskrivelse, eksperimenter, evaluering og konklusion
  • Præsentere metoder, resultater ved møder med projektvejleder og andre projektgrupper
  • Organisere og fremlægge resultater af projekt ved afsluttende posterpræsentation

Kursusindhold:

Der indledes med forelæsninger introducerende en række områder, der har forskningsmæssig interesse. Som eksempler på områder kan nævnes: Prædiktion af tidssignaler, neurale netværk, skjulte Markov modeller og Kalman filtre til modellering af sekventiel data, Bayesiansk modellering og klassifikation, uafhængig komponent analyse, separation og analyse af audiosignaler. Deltagerne gennemfører derefter et projekt inden for de fremlagte områder.

Bemærkninger:

Dette kursus er et videregående kurser indenfor machine learning og del af fokusområdet Machine Learning and Signal Processing under Master of Mathematical Modelling and Computing uddannelsen.

Mulighed for GRØN DYST deltagelse:

Kontakt underviseren for information om hvorvidt dette kursus giver den studerende mulighed for at lave eller forberede et projekt som kan deltage i DTUs studenterkonference om bæredygtighed, klimateknologi og miljø (GRØN DYST). Se mere på http://www.groendyst.dtu.dk

Kursusansvarlig:

Jan Larsen , Lyngby Campus, Bygning 321, Tlf. (+45) 4525 3923 , janla@dtu.dk
Lars Kai Hansen , Lyngby Campus, Bygning 321, Tlf. (+45) 4525 3889 , lkai@dtu.dk
Ole Winther , Lyngby Campus, Bygning 321, Tlf. (+45) 4525 3895 , olwi@dtu.dk
Morten Mørup , Tlf. , mmor@dtu.dk
Mikkel Nørgaard Schmidt , mnsc@dtu.dk

Institut:

01 Institut for Matematik og Computer Science

Tilmelding:

I CampusNet
Sidst opdateret: 01. maj, 2015