2014/2015

01605 Mathematical Modelling, Nonlinear Dynamics, Stochastic and Complex Systems

Engelsk titel:

Mathematical Modelling, Nonlinear Dynamics, Stochastic and Complex Systems

Sprog:

Point( ECTS )

5

Kursustype:

Bachelor
Kurset udbydes under åben uddannelse
 

Skemaplacering:

E1B (tors 13-17)

Undervisningens placering:

Campus Lyngby

Undervisningsform:

Forelæsninger og øvelser

Kursets varighed:

13-uger

Eksamensplacering:

E1B

Evalueringsform:

Hjælpemidler:

Bedømmelsesform:

Anbefalede forudsætninger:

,

Deltagerbegrænsning:

Minimum 10

Overordnede kursusmål:

Dette kursus giver en unik intriduktion til modellering med differentialligninger kombineret med data analyse. Dette inkluderer både teori for deterministiske dynamiske systemer og stokastiske systemer. Forelæsningerne vil dække matematiske teknikker til analyse af komplekse systemer fra flere anvendelsesområder i natur- og ingeniør-videnskab. Alle teoretiske dele vil blive fulgt af øvelser baseret på eksempler fra mekanik over medicin til økonomi.

Læringsmål:

En studerende, der fuldt ud har opfyldt kursets mål, vil kunne:
  • apply mathematical modelling, differential equations, existence and stability theory
  • apply numerical methods
  • apply theory of invariant manifolds
  • define periodic solutions
  • apply bifurcation theory and the implicit function theorem
  • apply time series analysis
  • model using stochastic differential equations
  • examplify travelling waves and pattern formation
  • explain the solution of exercises to other students

Kursusindhold:

Mathematical modelling, differential equations, existence and stability theory:
Important examples of differential equations in science and engineering, mathematical modelling, elementary solution methods, existence and uniqueness, numerical solutions, phase space, Lyapunov stability, asymptotic stability and Lyapunov functions.

Numerical methods:
Runge-Kutta methods for non-stiff (and stiff systems), error estimation, adaptive step size control, sensitivity equations, dynamic optimization, parameter estimation and optimal control.

Theory of invariant manifolds:
Stable manifolds, unstable manifolds, center manifolds, homoclinic orbits, heteroclinic orbits and center manifold reduction.

Periodic solutions:
Theorem of Poincare-Bendixon, Poincare-sections, stability of periodic orbits and forced oscillators.

Bifurcations and the implicit function theorem:
Implicit function theorem, structural stability, saddle-node bifurcation, transcritical bifurcation, pitchfork bifurcation, Hopf bifurcation and continuation techniques.

Time series analysis
Characteristics for time series, parametric and non- parametric modelling, models for linear and non-linear time series, model identification, estimation and verification, predictions in time series.

Stochastic differential equations:
Introduction to stochastic differential equations, Itô and Stratonovich integrals, grey-box modelling, parameter estimation and model building.

Travelling waves and pattern formation:
Nonlinear partial differential equations, traveling waves and soliton solutions.

Litteraturhenvisninger:

Noter vil blive delt.

Bemærkninger:

Many practical exercises will accompany the lectures.

Kursusansvarlig:

Jens Starke , Bygning 303B, Tlf. (+45) 4525 3060 , jsta@dtu.dk
Lasse Engbo Christiansen , Bygning 303, Tlf. (+45) 4525 3315 , laec@dtu.dk
Jan Kloppenborg Møller , Bygning 303B, Tlf. (+45) 4525 3418 , jkmo@dtu.dk

Institut:

01 Institut for Matematik og Computer Science

Tilmelding:

I CampusNet
Sidst opdateret: 12. august, 2014